Types and Model Structure (cont.)

Yoad Winter

Foundations Semantics & Pragmatics

22 Nov. 2012
Our model of entailment

1- Functions – useful as denotations
2- Types and domains – organize models
3- Models – and their interaction with syntax
Functions again
Given two sets A and B, a function from A to B is a rule or procedure that "inputs" elements of A and "outputs" elements of B.

Notation:

$$f : A \rightarrow B$$

Every element $a \in A$ gets "sent to" some element of B which is called $f(a)$.

Functions are also called mappings.

A is called the domain of f, and B the codomain or range.
One-to-one and onto

\[f : A \rightarrow B \] is one-to-one if different inputs go to different outputs.

\[f : A \rightarrow B \] maps onto \(B \) if every element of \(B \) is the output of some element of \(A \), possibly more than one.

(Often people say “\(f \) is onto”, using a preposition as an adjective. Clearly they have no regard for traditional grammar!)

Fancier names: injective for one-to-one. surjective for “maps onto its codomain.”
Sets having the same size

We say that two sets A and B have the same size if there is a function $f : A \rightarrow B$ which is one-to-one and maps onto B.

These conditions can be expressed more formally:

If $a \neq a'$ in A, then $f(a) \neq f(a')$.

For every b, there is some $a \in A$ such that $f(a) = b$.
Example

Here are two sets:

- Numbers = \{0, 1, 2, 3, \ldots\}
- Even = \{0, 2, 4, 6, \ldots\}

It might be surprising to think that these two sets have the same size, but this is what the definitions tell us.

To be sure, we need to find some function

\[f : \text{Numbers} \rightarrow \text{Even} \]

which is one-to-one and onto.

We can take

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 2 \\
 f(2) &= 4 \\
 \vdots & \quad \vdots \\
 f(n) &= 2n \\
 \vdots & \quad \vdots
\end{align*}
\]
Sets of functions

For any two sets A and B, the set of all functions from A to B is denoted

$$B^A$$

alternatively, $A \rightarrow B$

Example:

$$\{a, b, c\}^{\{1,2\}} = \text{the following functions:}$$

$$1 \mapsto a \quad 2 \mapsto a$$
$$1 \mapsto a \quad 2 \mapsto b$$
$$1 \mapsto a \quad 2 \mapsto c$$
$$1 \mapsto b \quad 2 \mapsto a$$
$$1 \mapsto b \quad 2 \mapsto b$$
$$1 \mapsto b \quad 2 \mapsto c$$
$$1 \mapsto c \quad 2 \mapsto a$$
$$1 \mapsto c \quad 2 \mapsto b$$
$$1 \mapsto c \quad 2 \mapsto c$$
Types and Domains
A type is a label for part of a model that is called a domain.

Basic types and domains:
- \(e : D_e \) - arbitrary - of entities
- \(t : D_t = \{0,1\} \) - of truth-values

Complex types and domains: defined inductively from basic types and domains.
Example

\[E = D_e = \text{the set of entities } \{t,j,m\} \]

\[[\text{thin}]] = T = \{t,j\}

We can also define \(T \) as a function from \(D_e \) to \(D_t \):

\[
\begin{align*}
 t &\rightarrow 1 \\
 j &\rightarrow 1 \\
 m &\rightarrow 0
\end{align*}
\]

This function \textbf{characterizes} \(T \) in \(E = D_e \).

\(D_{et} \) of the complex type \textbf{et} is the domain of such functions.
Characteristic functions over \{t,j,m\}

<table>
<thead>
<tr>
<th>Subset of (D_e)</th>
<th>Function in (D_{et})</th>
</tr>
</thead>
</table>
| \(\emptyset\) | \(f_1: t \mapsto 0\)
 | \(j \mapsto 0\)
 | \(m \mapsto 0\) |
| \{m\} | \(f_2: t \mapsto 0\)
 | \(j \mapsto 0\)
 | \(m \mapsto 1\) |
| \{j\} | \(f_3: t \mapsto 0\)
 | \(j \mapsto 1\)
 | \(m \mapsto 0\) |
| \{j, m\} | \(f_4: t \mapsto 0\)
 | \(j \mapsto 1\)
 | \(m \mapsto 1\) |
| \{t\} | \(f_5: t \mapsto 1\)
 | \(j \mapsto 0\)
 | \(m \mapsto 0\) |
| \{t, m\} | \(f_6: t \mapsto 1\)
 | \(j \mapsto 0\)
 | \(m \mapsto 1\) |
| \{t, j\} | \(f_7: t \mapsto 1\)
 | \(j \mapsto 1\)
 | \(m \mapsto 0\) |
| \{t, j, m\} | \(f_8: t \mapsto 1\)
 | \(j \mapsto 1\)
 | \(m \mapsto 1\) |

Table 2.1: Subsets of \(D_e\) and their characteristic functions in \(D_{et}\)
Characteristic Functions

Let X be any set.

Every subset $A \subseteq X$ gives us a function $f_A : X \to \{0, 1\}$ called the characteristic function of A.

It is defined as follows:

$$f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Example: $X = \{a, b, c, d\}$, $A = \{a, c\}$

Here are some examples of how this function f_A works:

- $f_A(a) = 1$.
- $f_A(b) = 0$.
- $f_A(c) = 1$.
- $f_A(d) = 0$.
Definition 1. The set of types over the basic types e and t is the smallest set \mathcal{T} that satisfies:

(i) $\{e, t\} \subseteq \mathcal{T}$

(ii) If τ and σ are types in \mathcal{T} then $(\tau \sigma)$ is also a type in \mathcal{T}.

\[
e, t, \\
ee, tt, et, te, \\
e(ee), e(tt), e(et), e(te), t(ee), t(tt), t(et), t(te), \\
(ee)e, (tt)e, (et)e, (te)e, (ee)t, (tt)t, (et)t, (te)t, \\
(ee)(ee), (ee)(tt), (ee)(et), (ee)(te), (tt)(ee), (tt)(tt), (tt)(et), (tt)(te)
\]

Definition 2. For all types τ and σ in \mathcal{T}, the domain $D_{\tau \sigma}$ of the type $(\tau \sigma)$ is the set $D_{\sigma}^{D_{\tau}}$ – the functions from D_{τ} to D_{σ}.

Intransitive verbs

Tina smiled.

\[\text{smile}_{et}(\text{tina}_e) \]
Function Application

From types e and et, FA gives t (as we have seen above).
From types $(e(et))(et)$ and $e(et)$, FA gives et.
Types $(e(et))(et)$ and et cannot combine using FA: neither of these types is a prefix of the other.

Function Application (FA):

\[(ab) + a = b\]
\[f + x = f(x)\]
Intransitive and Transitive verbs

Tina smiled.
Tina [praised Mary].

\(\text{smile}_{et}(tina_e) \)

\((\text{praise}_{e(et)}(mary_e))(tina_e) \)

or

\(\text{praise}(mary)(tina) \)
“Curried” Relations

\[U = \{ (t, m), (m, t), (m, j), (m, m) \} \]

\[f_U : \begin{array}{llll}
 t & \mapsto & [t \mapsto 0 & j \mapsto 0 & m \mapsto 1] \\
 j & \mapsto & [t \mapsto 0 & j \mapsto 0 & m \mapsto 1] \\
 m & \mapsto & [t \mapsto 1 & j \mapsto 0 & m \mapsto 1]
\end{array} \]

- \(f_U \) maps the entity \(t \) to the function characterizing the set \(\{ m \} \).
- \(f_U \) maps the entity \(j \) to the function characterizing the same set, \(\{ m \} \).
- \(f_U \) maps the entity \(m \) to the function characterizing the set \(\{ t, m \} \).

When the function \(f_U \) is the denotation of the verb \textit{praise}, and the entities \(t, j \) and \(m \) are the denotations of the respective names, this is the situation where:

- Mary is the only one who praised Tina.
- Mary is the only one who praised John.
- Tina and Mary, but not John, praised Mary.
Currying

F: $(M \times W) \rightarrow [0, 1]$
F gives any pair of man and woman (m, w) a score $F(m, w)$ indicating matching

G: $M \rightarrow (W \rightarrow [0, 1])$
G gives any man m a function $G(m)$ mapping any woman w to a score $(G(m))(w)$.

Thus, we can define: $(G(m))(w) = F(m, w)$
We say that G is the Curried version of F, and that F is the deCurried version of G.
Use of Currying for compositional interpretation of binary structures

A.

Tina
 praised
 Mary

B.

praise(mary)(tina) : t

 tina : e
 praise(mary) : et

 praise : e(et)
 mary : e
Modifiers

Mary [walked quickly]

Mary walked
Non-arbitrary Denotations: IS

For every function f in D_{et}: $\text{is}(f) = f$.

A. Tina
 is
 tall

B. $(\text{is}(\text{tall}))(\text{tina}) : t$
 tina : e
 is(tall) : et
 is : $(et)(et)$
 tall : et

Alternative structures – alternative types?
Non-arbitrary Denotations: AND

For every two functions f_A and f_B in D_e, characterizing the subsets A and B of D_e: $(\text{AND}(f_A))(f_B)$ is defined as the function $f_{A \cap B}$, characterizing the intersection of A and B.

Explain:
Tina is tall and thin \implies Tina is thin

Types?
In General

Types of the form:

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntactic/semantic role</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>?</td>
</tr>
<tr>
<td>a(at)</td>
<td>?</td>
</tr>
<tr>
<td>a(a(at))</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>aa</td>
<td>?</td>
</tr>
<tr>
<td>a(aa)</td>
<td>?</td>
</tr>
<tr>
<td>a(a(aa))</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>
In General

Types of the form

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>1-place predicates</td>
<td>smile</td>
</tr>
<tr>
<td>$a(at)$</td>
<td>2-place predicates</td>
<td>praise</td>
</tr>
<tr>
<td>$a(a(at))$</td>
<td>3-place predicates</td>
<td>send</td>
</tr>
<tr>
<td>…</td>
<td>n-place predicates</td>
<td></td>
</tr>
<tr>
<td>aa</td>
<td>modifiers</td>
<td>quickly</td>
</tr>
<tr>
<td></td>
<td>(1-place coordinators)</td>
<td></td>
</tr>
<tr>
<td>$a(aa)$</td>
<td>2-place coordinators</td>
<td>M and J</td>
</tr>
<tr>
<td>$a(a(aa))$</td>
<td>3-place coordinators</td>
<td>M, J and S</td>
</tr>
<tr>
<td>…</td>
<td>n-place coordinators</td>
<td></td>
</tr>
</tbody>
</table>
What would be the type of IS with the following (infelicitous) structure?

[Tina is] tall

What denotation would we assume for IS?
Some examples to think about

Mary [walked [in Utrecht]]
[Walk -ing] [is fun]
[[Walk -ing] [in Utrecht]] [is fun]
[The man] smiled
[The [tall man]] smiled
[If [you smile]] [you win]
There [is [trouble [in Paradise]]]
I [[love it] [when [you smile]]]